51 research outputs found

    Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi

    Get PDF
    Background: A critical step in the RT-qPCR workflow for studying gene expression is data normalization, one of the strategies being the use of reference genes. This study aimed to identify and validate a selection of reference genes for relative quantification in Talaromyces versatilis, a relevant industrial filamentous fungus. Beyond T. versatilis, this study also aimed to propose reference genes that are applicable more widely for RT-qPCR data normalization in filamentous fungi. [br/]Results: A selection of stable, potential reference genes was carried out in silico from RNA-seq based transcriptomic data obtained from T. versatilis. A dozen functionally unrelated candidate genes were analysed by RT-qPCR assays over more than 30 relevant culture conditions. By using geNorm, we showed that most of these candidate genes had stable transcript levels in most of the conditions, from growth environments to conidial germination. The overall robustness of these genes was explored further by showing that any combination of 3 of them led to minimal normalization bias. To extend the relevance of the study beyond T. versatilis, we challenged their stability together with sixteen other classically used genes such as beta-tubulin or actin, in a representative sample of about 100 RNA-seq datasets. These datasets were obtained from 18 phylogenetically distant filamentous fungi exposed to prevalent experimental conditions. Although this wide analysis demonstrated that each of the chosen genes exhibited sporadic up-or down-regulation, their hierarchical clustering allowed the identification of a promising group of 6 genes, which presented weak expression changes and no tendency to up-or down-regulation over the whole set of conditions. This group included ubcB, sac7, fis1 and sarA genes, as well as TFC1 and UBC6 that were previously validated for their use in S. cerevisiae. [br/]Conclusions: We propose a set of 6 genes that can be used as reference genes in RT-qPCR data normalization in any field of fungal biology. However, we recommend that the uniform transcription of these genes is tested by systematic experimental validation and to use the geometric averaging of at least 3 of the best ones. This will minimize the bias in normalization and will support trustworthy biological conclusions

    A Ralstonia solanacearum type III effector directs the production of the plant signal metabolite trehalose-6-phosphate

    Get PDF
    The plant pathogen Ralstonia solanacearum possesses two genes encoding a trehalose-6-phosphate synthase (TPS), an enzyme of the trehalose biosynthetic pathway. One of these genes, named ripTPS, was found to encode a protein with an additional N-terminal domain which directs its translocation into host plant cells through the type 3 secretion system. RipTPS is a conserved effector in the R. solanacearum species complex, and homologues were also detected in other bacterial plant pathogens. Functional analysis of RipTPS demonstrated that this type 3 effector synthesizes trehalose-6-phosphate and identified residues essential for this enzymatic activity. Although trehalose-6-phosphate is a key signal molecule in plants that regulates sugar status and carbon assimilation, the disruption of ripTPS did not alter the virulence of R. solanacearum on plants. However, heterologous expression assays showed that this effector specifically elicits a hypersensitive-like response on tobacco that is independent of its enzymatic activity and is triggered by the C-terminal half of the protein. Recognition of this effector by the plant immune system is suggestive of a role during the infectious process.Ralstonia solanacearum, the causal agent of bacterial wilt disease, infects more than two hundred plant species, including economically important crops. The type III secretion system plays a major role in the pathogenicity of this bacterium, and approximately 70 effector proteins have been shown to be translocated into host plant cells. This study provides the first description of a type III effector endowed with a trehalose-6-phosphate synthase enzymatic activity and illustrates a new mechanism by which the bacteria may manipulate the plant metabolism upon infection. In recent years, trehalose-6-phosphate has emerged as an essential signal molecule in plants, connecting plant metabolism and development. The finding that a bacterial pathogen could induce the production of trehalose-6-phosphate in plant cells further highlights the importance of this metabolite in multiple aspects of the molecular physiology of plants

    Similarities and differences in the biochemical and enzymological properties of the four isomaltases from Saccharomyces cerevisiae

    Get PDF
    AbstractThe yeast Saccharomyces cerevisiae IMA multigene family encodes four isomaltases sharing high sequence identity from 65% to 99%. Here, we explore their functional diversity, with exhaustive in-vitro characterization of their enzymological and biochemical properties. The four isoenzymes exhibited a preference for the α-(1,6) disaccharides isomaltose and palatinose, with Michaëlis–Menten kinetics and inhibition at high substrates concentration. They were also able to hydrolyze trisaccharides bearing an α-(1,6) linkage, but also α-(1,2), α-(1,3) and α-(1,5) disaccharides including sucrose, highlighting their substrate ambiguity. While Ima1p and Ima2p presented almost identical characteristics, our results nevertheless showed many singularities within this protein family. In particular, Ima3p presented lower activities and thermostability than Ima2p despite only three different amino acids between the sequences of these two isoforms. The Ima3p_R279Q variant recovered activity levels of Ima2p, while the Leu-to-Pro substitution at position 240 significantly increased the stability of Ima3p and supported the role of prolines in thermostability. The most distant protein, Ima5p, presented the lowest optimal temperature and was also extremely sensitive to temperature. Isomaltose hydrolysis by Ima5p challenged previous conclusions about the requirement of specific amino acids for determining the specificity for α-(1,6) substrates. We finally found a mixed inhibition by maltose for Ima5p while, contrary to a previous work, Ima1p inhibition by maltose was competitive at very low isomaltose concentrations and uncompetitive as the substrate concentration increased. Altogether, this work illustrates that a gene family encoding proteins with strong sequence similarities can lead to enzyme with notable differences in biochemical and enzymological properties

    Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae

    No full text
    International audienceGlycogen and trehalose are the two glucose stores of yeast cells. The large variations in the cell content of these two compounds in response to different environmental changes indicate that their metabolism is controlled by complex regulatory systems. In this review we present information on the regulation of the activity of the enzymes implicated in the pathways of synthesis and degradation of glycogen and trehalose as well as on the transcriptional control of the genes encoding them. cAMP and the protein kinases Snf1 and Pho85 appear as major actors in this regulation. From a metabolic point of view, glucose-6-phosphate seems the major effector in the net synthesis of glycogen and trehalose. We discuss also the implication of the recently elucidated TOR-dependent nutrient signalling pathway in the control of the yeast glucose stores and its integration in growth and cell division. The unexpected roles of glycogen and trehalose found in the control of glycolytic flux, stress responses and energy stores for the budding process, demonstrate that their presence confers survival and reproductive advantages to the cell. The findings discussed provide for the first time a teleonomic value for the presence of two different glucose stores in the yeast cell.

    STRE-and cAMP-independent Transcriptional Induction of Saccharomyces cerevisiae GSY2 Encoding Glycogen Synthase during Diauxic Growth on Glucose

    No full text
    International audienceIt has been shown that the so-called stationary phase GSY2 gene encoding glycogen synthase was induced as the cells left the exponential phase of growth, while glucose and all other nutrients were still plentiful in the medium (Parrou et al., 1999). Since this effect was essentially controlled at the transcriptional level, we looked for the cis-and transacting elements required for this specific growth-related genetic event. We demonstrated that mutations of the HAP2/3/4 binding site and of the two STress-Responsive cis-Elements (STRE) did not abolish the early induction of GSY2, although the latter mutation led to a 20-fold drop in the transcriptional activity of the promoter, as determined from lacZ gene fusions. Insertion of a DNA fragment (from 390 to 167 bp, relative to the ATG) of the promoter lacking the two STREs, upstream to the TATA box of a CYC1-lacZ fusion gene, allowed this reporter gene to be induced with a kinetic similar to that of GSY2-lacZ. Mutations in BCY1, which results in a hyperactive protein kinase A, did not alleviate the early induction, while causing a five-to 10-fold reduction in the transcriptional activity of GSY2. In addition, the repressive effect of protein kinase A was quantitatively conserved when both STREs were mutated in GSY2 promoter, indicating that the negative control of gene expression by the RAS-cAMP signalling pathway does not act solely through STREs. Taken together, these results are indicative of an active process that couples growth control to dynamic glucose consumption

    STRE-and cAMP-independent Transcriptional Induction of Saccharomyces cerevisiae GSY2 Encoding Glycogen Synthase during Diauxic Growth on Glucose

    No full text
    International audienceIt has been shown that the so-called stationary phase GSY2 gene encoding glycogen synthase was induced as the cells left the exponential phase of growth, while glucose and all other nutrients were still plentiful in the medium (Parrou et al., 1999). Since this effect was essentially controlled at the transcriptional level, we looked for the cis-and transacting elements required for this specific growth-related genetic event. We demonstrated that mutations of the HAP2/3/4 binding site and of the two STress-Responsive cis-Elements (STRE) did not abolish the early induction of GSY2, although the latter mutation led to a 20-fold drop in the transcriptional activity of the promoter, as determined from lacZ gene fusions. Insertion of a DNA fragment (from 390 to 167 bp, relative to the ATG) of the promoter lacking the two STREs, upstream to the TATA box of a CYC1-lacZ fusion gene, allowed this reporter gene to be induced with a kinetic similar to that of GSY2-lacZ. Mutations in BCY1, which results in a hyperactive protein kinase A, did not alleviate the early induction, while causing a five-to 10-fold reduction in the transcriptional activity of GSY2. In addition, the repressive effect of protein kinase A was quantitatively conserved when both STREs were mutated in GSY2 promoter, indicating that the negative control of gene expression by the RAS-cAMP signalling pathway does not act solely through STREs. Taken together, these results are indicative of an active process that couples growth control to dynamic glucose consumption

    STRE-and cAMP-independent Transcriptional Induction of Saccharomyces cerevisiae GSY2 Encoding Glycogen Synthase during Diauxic Growth on Glucose

    No full text
    International audienceIt has been shown that the so-called stationary phase GSY2 gene encoding glycogen synthase was induced as the cells left the exponential phase of growth, while glucose and all other nutrients were still plentiful in the medium (Parrou et al., 1999). Since this effect was essentially controlled at the transcriptional level, we looked for the cis-and transacting elements required for this specific growth-related genetic event. We demonstrated that mutations of the HAP2/3/4 binding site and of the two STress-Responsive cis-Elements (STRE) did not abolish the early induction of GSY2, although the latter mutation led to a 20-fold drop in the transcriptional activity of the promoter, as determined from lacZ gene fusions. Insertion of a DNA fragment (from 390 to 167 bp, relative to the ATG) of the promoter lacking the two STREs, upstream to the TATA box of a CYC1-lacZ fusion gene, allowed this reporter gene to be induced with a kinetic similar to that of GSY2-lacZ. Mutations in BCY1, which results in a hyperactive protein kinase A, did not alleviate the early induction, while causing a five-to 10-fold reduction in the transcriptional activity of GSY2. In addition, the repressive effect of protein kinase A was quantitatively conserved when both STREs were mutated in GSY2 promoter, indicating that the negative control of gene expression by the RAS-cAMP signalling pathway does not act solely through STREs. Taken together, these results are indicative of an active process that couples growth control to dynamic glucose consumption

    Caractérisation biochimique et enzymologique d'une famille d'isomaltases chez la levure Saccharomyces cerevisiae

    No full text
    La levure Saccharomyces cerevisiae est capable d utiliser une grande variété de sucres comme source de carbone et d énergie. La plupart des enzymes impliquées dans l utilisation de ces sucres sont codées par des gènes issus de familles multigéniques. C est le cas de la famille IMA identifiée comme impliquée dans l utilisation de l isomaltose. Cette famille comprend cinq gènes qui codent pour quatre isomaltases partageant une forte identité de séquence (de 65% à 100 %). Dans ce travail , la diversitéfonctionnelle de la famille IMA a été étudiée, en caractérisant de façon exhaustive in vitro leurs propriétés biochimiques et enzymologiques. Ima1p et Ima2p possèdent des propriétés biochimiques identiques (pH, température, et thermostabilité) mais Ima3p se distingue par rapport à ces deux protéines bien que n ayant que trois acides de différence avec Ima2p (thermostabilité plus faible). Ima5p quant à elle, est la protéine la plus dissemblable (température optimale plus faible et demi-vie basse dès 37C). Les quatre isomaltases sont cependant très sensibles au Tris et aux ions Fe3+. Les quatre isoenzymes présentent une préférence pour les disaccharides liés en a-1,6 (isomaltose et palatinose), avec une cinétique de type Michaëlis-Menten et une inhibition par le substrat à une concentration élevée. Les isomaltases Imap sont cependant aussi capables d'hydrolyser les disaccharides a-1,2, a-1,3 et a-1,5 ainsi que les trisaccharides portant une liaison a-1,6, ce qui met en évidence leur ambiguïté de substrat .Nos résultats ont toutefois montré de nombreuses singularités dans cette famille de protéines. Alors que Ima1p et Ima2p présentent des propriétés très semblables, l activité catalytique de Ima3p est globalement très faible malgré sa forte ressemblance avec Ima2p. Le variant Ima3p_R279Q retrouve des niveaux d'activité proches de ceux d Ima2p, tandis que la substitution d une leucine par une proline à la position 240 a permis d augmenter de manière significative la stabilité d Ima3p confirmant le rôle des prolines dans la thermostabilité des protéines. L hydrolyse de l isomaltose par Ima5p réfute lesconclusions précédemment publiées sur l'exigence d'acides aminés spécifiques pour déterminer la spécificité de a-1,6 puisque le variant IMA5-MQH ne permet pas de restaurer une activité semblable à Ima1p malgré la présence des trois résidus MQH. Nous avons également trouvé qu Ima5p est inhibé par le maltose suivant une inhibition mixte tandis qu Ima1p est inhibée de façon compétitive à faible concentration et de manière incompétitive à forte concentration en isomaltoseMost enzymatic systems for sugar uptake and assimilation rely on multigene families in theyeast Saccharomyces cerevisiae. The IMA / MAL family has been used as a model system to study themolecular mechanisms that govern evolution of duplicated genes. The five IMA multigene familymembers encode four isomaltases sharing high sequence identity from 65% to 99%, of which IMA3and IMA4 are 100% identical to encode the same isomaltase. In this work, the functional diversity ofIMA family was further explored, with exhaustive in-vitro characterization of their biochemical andenzymological properties.Ima1p and Ima2p were similar to biochemical properties; Ima3p showed some differences fromthe two proteins; amongst them, Ima5p was the most distant protein. The four isomaltases were highlysensitive to Tris and Fe3+, but were unaffected by the addition or the removal of Ca2+ despiteconservation of the calcium binding site. Besides, four isoenzymes exhibited a preference for the a-(1,6)disaccharides isomaltose and palatinose, with Michaelis-Menten kinetics and inhibition at highsubstrates concentration. They were also able to hydrolyse trisaccharides bearing an a-(1,6) linkage,but also a-(1,2), a-(1,3) and a-(1,5) disaccharides including sucrose, highlighting their substrateambiguity. While Ima1p and Ima2p presented almost identical characteristics, the results neverthelessshowed many singularities within this protein family. In particular, Ima3p presented lower activitiesthan Ima2p despite only 3 different amino acids between these two isoforms. The Ima3p_R279Qvariant recovered activity levels of Ima2p, while the Leu-to-Pro substitution at position 240significantly increased the stability of Ima3p and supported the role of prolines inthermostability.Ima5p presented the lower optimal temperature and was also extremely sensitive to temperature. Isomaltose hydrolysis by Ima5p challenged previous conclusions about the requirement of specificamino acids for determining the specificity for a-(1,6) substrates. We finally found a mixed inhibitionby maltose for Ima5p while, contrary to a previous work, Ima1p inhibition by maltose was competitiveat very low isomaltose concentrations and uncompetitive as the substrate concentration increased.The presented Ph.D s work provided preliminary insights into determining structural factorswithin this family, exemplifying for example the role of proline residues for thermosability. Moreover,it was illustrated that a gene family encoding proteins with strong sequence similarities can lead toenzyme with notable differences in biochemical and enzymological properties.TOULOUSE-INSA-Bib. electronique (315559905) / SudocSudocFranceF
    • …
    corecore